General Relativity

Re-take Exam 28/11/2013

Please write your first and last name and your student number on the first page.

Problem #1: Anti-de Sitter space

Consider the 2-dimensional spacetime

$$ds^2 = r^2 dt^2 - \frac{dr^2}{r^2}$$

defined for r > 0.

- 1. Write the components of the metric and compute the Christoffel symbols.
- 2. Consider the Riemann tensor with all components lower. How many independent components does it have in 2 dimensions? Compute the independent components of the Riemann tensor (with lower indices) for this metric.
- 3. Derive the equations of motion for massive particles moving in this spacetime.
- 4. Derive an effective potential for the motion of massive particles in this geometry. Using this potential show that particles feel a force towards smaller value of r and also that massive particles moving along geodesics can never reach the region $r \to \infty$.
- 5. Consider a massive particle of mass m staying at constant value of $r = r_0$. Compute the relativistic acceleration that the particle undergoes and the force needed to keep it in this orbit.

Problem #2: FRW evolution and equation of state

Consider a homogeneous isotropic Universe describe by the Robertson-Walker metric with k=0 i.e.

$$ds^{2} = dt^{2} - a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$

Assume that the Universe is filled with a fluid described by the equation of state

$$P = w\rho$$

Here P is the pressure, ρ the density and w some constant which characterizes the type of fluid.

- 1. Write the FRW equations for this Universe.
- 2. By following steps similar to those for the matter/radiation dominated Universe, show that the density is related to the scale factor as

$$\rho = C a^{-3(1+w)}$$

where C is some constant.

3. Solve for the scale factor a(t) and show that for late times the scale factor depends on time as

$$a(t) \approx D t^{\frac{2}{3(1+w)}}$$

where D is another constant.

Problem #3: Geometry of a charged black hole

Consider the metric

$$ds^{2} = f(r)dt^{2} - f^{-1}(r)dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

with

$$f(r)=1-\frac{2GM}{r}+\frac{Q^2}{r^2}$$

which describes the spacetime around a black hole of mass M and electric charge Q.

- 1. Find the conditions for the parameters M,Q in order for the equation f(r)=0 to have two real solutions. We call these solutions r_+,r_- where we take our conventions such that $r_+>r_-$. Naively the metric appears to be singular at $r=r_+$ and $r=r_-$, but we will argue that these are coordinate singularities and play the role of horizons.
- 2. Argue that the function f can be written as

$$f(r) = \frac{(r - r_+)(r - r_-)}{r^2}$$

3. Consider radially infalling light rays. Show that they can be describe by the equation

$$\frac{r^2}{(r-r_+)(r-r_-)}dr = -dt$$

4. In order to simplify the integration of this equation verify that we can write

$$\frac{r^2}{(r-r_+)(r-r_-)} = 1 + \left(\frac{r_+^2}{r_+-r_-}\right) \frac{1}{r-r_+} - \left(\frac{r_-^2}{r_+-r_-}\right) \frac{1}{r-r_-}$$

5. Using the simplification of point 4. solve the radial null equation in point 3. Define the Eddington Finkelstein time coordinate \widetilde{t} in which the equations of motion of infalling light rays is

$$\tilde{t} + r = \text{constant}$$

The answer should be

$$\widetilde{t} = t + \left(\frac{r_+^2}{r_+ - r_-}\right) \log(r - r_+) - \left(\frac{r_-^2}{r_+ - r_-}\right) \log(r - r_-)$$

6. Check that $d\tilde{t} = dt + (f^{-1} - 1)dr$. Using this, eliminate the variable t and write the metric in terms of the variables $\tilde{t}, r, \theta, \phi$. Show that it takes the form

$$ds^{2} = fd\tilde{t}^{2} - 2(1-f)drd\tilde{t} - (2-f)dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Which is regular for all r > 0.

7. In the \widetilde{t} , r coordinates, find the orientation of the lightcone as a function of r. Draw a lightcone diagram for this metric in the \widetilde{t} , r coordinates and explain physically what happens at the horizons $r=r_+$ and $r=r_-$.